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DERIVATIVES OF SECONDARY
CHARACTERISTIC CLASSES

JAMES L. HEITSCH

Introduction

Secondary characteristic classes have been studied extensively in recent years,
particularly with regard to foliations. One of the most interesting properties of
these classes is their ability to vary continuously with a continuous deforma-
tion of the foliation. In this paper we construct the derivatives of these seconda-
ry classes for a given foliation.

Let F be afoliation of codimension ¢ on a manifold M. Let @ be the sheaf
of germs of vector fields on M which preserve F. Then H'(M; @) is the space
of infinitesimal deformations of F. There are a graded differential complex WO,
and a natural map

ak: H¥(WO,) — H*(M; R)

depending only on F, which gives characteristic classes for the foliation. We
construct a natural map

Dy H(M; @) X H¥(WO,) — H*(M; R)

which depends only on F. This map gives the derivatives of the characteristic
classes for the foliation in the sense that if 3¢ H'(M; @) is the infinitesimal
deformation associated to an actual deformation F,, s € R, F, = F, then for
fe H¥(WO)

DI‘(AB f) = 0 0-’1*,‘

In a crude sense, if one views a*(f) as a map from the space of foliations on
M to the cohomology of M, one may think of D(., ) as the induced map on
the tangent space of the space of foliations. The point of this construction is
that it allows one to compute derivatives of characteristic classes corresponding
to deformations of a fixed foliation F using only information provided by the
foliation, i.e. one does not need to know what the deformation is in order to
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construct its associated derivatives. All the information is contained in F and
HY(M; D).

This construction may also be applied to the secondary classes of Simons
[7].

The paper is organized as follows. In section 1 we review known results and
gather information required later. Section 2 contains the construction of the
map Dy. In section 3 we show how to partially extend this construction to the
case of complex foliations. In section 4 we compute the derivatives of two im-
portant examples, the horocyclic flow on a surface of constant negative cur-
vature and the Hopf fibrations, and show that these derivatives are zero.

1. Review of needed results

For a more thorough treatment of the material presented in this section the
reader should consult the references.

Throughout the paper we treat only smooth (C*) objects and observe the
conventions that M is a manifold, F is a foliation of codimension ¢ on M with
tangent bundle r, normal bundle » and dual normal bundle v*. C=(M) is the
space of smooth real valued functions on M. If ¢ is a bundle over M, C=(&)
denotes the space of smooth sections of & The cohomology class determined
by a closed form w on M is denoted by [w]. Finally we observe the Einstein
convention of summing over repeated indices in any expression.

We begin by briefly recalling the Chern-Weil construction of characteristic
classes. See [17, Chapter XII].

Let g/, be the Lie algebra of the real general linear group GL,, and denote
by I*(GL,) the set of all symmetric multilinear maps

fixgl,— R
k

such that forae GL,, X;, - - -, X, e gl,
.f(aXla_lf Ty ana_l) :.f(Xla DY Xk) .

Such a map is called an invariant polynomial of degree k. If we define

23

I(GL) = > I"(GL,) ,

k=0

then I(GL,) has the structure of a graded ring and is given by
I(GLQ) = R[cl’ R Cq] B

where ¢, is the kth Chern polynomial and degree ¢, = k. We observe the Chern
convention for invariant polynomials, that is, if fe I*(GL,) and f contains
fewer than k& arguments, the last one is repeated a number of times to make f
a function of k arguments. Thus
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JXL X)) =X, X, -1, X)), X, X,egl,.
\———ﬁf‘/

k=1

Let I7: P— M be a principal GL, bundle over M. If ae GL,, then a acts
freely on P on the left by L,. A g/ -valued r-form A on P is called tensorial of
type ad if

(i) A is horizontal, i.e., if X, -, X, € TP and I1,(X,) = 0 some i then
AX, -, X,)=0,

(i) L*A = ada™.

Observe that if A, - - -, 4, are tensorial of type ad and fe I*(GL),), then f(4,,
-+, 4,) is a well defined form on P which projects to M. In particular the
curvature 2 of a connection 8 on P is a g/,-valued 2-form which is tensorial of
type ad and the 2k-form f{(£2) is a closed form on M.
If 6, and @, are two connections on P, we define

1
1,6,6) = k jofwl — 0, 0dt ,

where O, is the curvature of the connection 18, 4+ (1 — #)§,, t € R. As 8, — 6,
is tensorial of type ad, 4,(6,, 6,) is a well defined (2k — 1)-form on M, and

d(Af(ﬁla '90)) :f(gl) _f(go) .

Thus the cohomology class [f(¢2)] does not depend on & and in fact depends
only on P. The resulting map

W: I(GL,) — H*(M; R)

is called the Chern-Weil homomorphism.

Now denote by R[c, - - -, ¢,] the polynomial ring over R in the indicated
variables with degree ¢, = 2i. Let R [¢c;, - - -, ¢,] be the ring R[c,, - - -, ¢ ]/(ele-
ments of degree > 2¢), and let A(hy, A, - - -, hy 1) be an exterior algebra on the

h’s where degree A, = 2i — 1, and 2k 4 1 is the largest odd integer < g. WO,
is the differential complex

A(hl’ tT s h2k+1) ® Rq[cla Y cq] >

where d(1 ®¢) =0,d(h, ® 1) = ¢, D 1.

Denote the ring of differential forms on M by A(M). Let 4, be a Riemannian
connection on the principal dual normal bundle P of F. If £, is the curvature
of 4,, we remark that for any odd i the form ¢,(£2,) is identically zero. Let 4,
be a basic connection [4] on P with curvature £,. Define

ay: WO, — A(M)
by
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agc) = (), al"(hi) = Aci(als &),

and extend by linearity. The ¢, on the right are the Chern polynomials in
I(GL,). This map commutes with the differential operators and induces the map

af: H(WO,) - H¥(M; R) .

This map does not depend on the choices made.

This is one of several independently discovered and essentially equivalent ap-
proaches to secondary classes due to Berstein-Rozenfel’d [2], Bott-Haefliger [6],
Malgrange (unpublished), and Kamber-Tondeur [15]. We have adopted here
the method given in [4].

J. Vey [11] has given a basis of H*(WO,) by elements of the form

hil...}zik@ch...ch’ <o <b, L o<,

satisfying the auxiliary conditions

(i) if no A’s appear, each ¢, must have j even and j, + - - - +j, < g. (These
give the Pontrjagin classes of v*.)

(i) if some A’s appear, then 7, < smallest odd j appearing and 7, + j, +
-+ 4+ j, > q. (These give the secondary characteristic classes of F.)

A I vector field on a manifold M with a codimension-g foliation F is a
vector field Y such that the one-parameter family of local diffeomorphisms
generated by ¥ maps leaves of F to leaves of F. We identify two I vector fields
if their difference is a vector field tangent to F. If @ is the sheaf of germs of
local 7" vector fields on M, then H'(M; @) may be viewed as infinitesimal de-
formations of F. The cohomology groups H*(M ; @) can be computed as fol-
lows.

Recall 7 is the tangent bundle of F, v the normal bundle, and let I be the
covariant derivative determined by 4, a basic connection on v*. H*(M; @) is
the homology of the differential complex

C=0) 2> Co(c* @ v) > Co( e+ ® v) - >

A O @ ) —> 0 .
If o e C*(A*z* @v)and X, - - -, X, € C(z), then

do(Xp, -, X) = 5 (=DTx0Xo, -+, Koy -, X)

1.4 "y X X

+ Z (—1)Z+]U([Xi9 Xj]’ XO’ n 'in’ ""X
0<i< <k

The ™ over X, or X; means that entry is deleted. Thus each element of H'(M; @)

is represented by a section ¢ of * @ v with dg = 0.
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For our point of view on this see [14]. See also [10], [18], [16], [19], [20], and
[21].

We will be working with R%and g/ -valued forms such as w = (w,, - - -, @,),
6 = (6%), etc. To avoid becoming swamped in sub and superscripts we will often
abbreviate. For example, (2.13) written with scripts reads

. . 2 PR . P

2. Construction of the derivatives

In this section we construct, for a foliated manifold M, the natural map
D.: H(M; @) x H¥(WO,) - H*(M; R)
referred to in the introduction. This map gives the derivative of the map
af: H¥(WO,) > H*(M; R) .

We first construct for a given basic connection ¢ and a section ¢ representing
8 e H'(M; @) an infinitesimal derivative 8’ of 4.

Let F be a codimension-g foliation on an n-dimensional manifold A/, and
denote by 7*M the cotangent bundle of M, by ¢ the tangent bundle to F. The
dual normal bundle v* of F is the subbundle of 7*M consisting of those ele-
ments which restrict to zero on 7. Let P be the principal bundle associated to
v* and [1: P — M the projection. A point @ & P consists of a g-tuple v = (w,,
- -+, w,) where the w, are linearly independent elements of »* at the point //(w).
We will also denote by w the canonical R?%valued one form on P, w = (w,, - - -,
®,), given by
2.1) o(X) = (0,(I1,.X), - -, 0,1, X)), XeTP

(@1, yag) *

If a e GL,, it acts freely on the left on P by L, and
(2.2) L o = aw .

The canonical forms w,, - - -, w, define the foliation [I*F on P, with tangent
bundle /71-'(r), and generate an ideal /(w) in the ring of differential forms on P
which is closed under exterior differentiation. Also note that the product of any
g + 1 elements in I(w) must be zero so I(w)?** = 0. If 4 is a basic connection
on P, then

(2.3) do =0/Nw.
That is,
dw;, =05 N\ w; .
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It follows easily that the curvature
(2.4) R=do—9N0
of ¢ satisfies
RNow=0,
and so £ € /(w). Thus we may write
(2.5) Q0 =T% N o, iy =1,

where the I, are one-forms on P.

We now translate some of the results of previous section into statements
about P. The space C~(Az* ® v) consists of equivalence classes of sections of
A*T*M & v where two sections are identified if their restrictions to = coincide.
Let © be the normal bundle of the foliation //*F on P. An element ¢ ¢
C=(A*T*P ® £) may be viewed as an R%valued k-form on P by composing
with the canonical one-form w. We will always think of such ¢ as R%valued
forms in this way. An element ¢ € C*(A*T*P & ) projects to an element 7 ¢
C(A*T*M @ ) if and only if

(i) o is horizontal ,

(2.6) .. .
(i) L,*0c = ao, aeGL, .

If ¢ € C~(A*z* ®y), then & may be represented by an element g ¢ C=(A*T*P
& 9) satisfying (2.6). It follows directly from (1.4) that d& may be represented
by de¢ — 8 N ¢. Thus, if § € H'(M; @), it may be represented by an R?-valued
one-form ¢ on P satisfying

(1) o is horizontal ,
2.7 (i) L¥e = ao,
(i) do— 8 N olgry=0.

Definition (2.8). Let 5e H'(M; @) be represented by the R?-valued one-
form ¢ on P. The derivative o of the canonical one-form w with respect to a is
given by

Equation (iii) of (2.7) means that
do’ — 0N o € l(w) .
Thus there is a g/,-valued one-form ¢’ on P satisfying

(2.9) do' — 0N =60 Now.
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Definition (2.10). Any g/,-valued one-form ¢’ satisfying (2.9) is called an in-
[finitesimal derivative of 8 with respect to o.

If 9, and 4] are two infinitesimal derivatives of # with respect to ¢, then (2.9)
implies (¢, — 4;) A\ @ == 0. Thus
(2.11) 0 — 0y = Aw , A = AL,

where 1 = (17,), and the 2%, are functions on P.

Lemma (2.12). I ¢’ is an infinitesimal derivative of 8, then

(1) ¢ is horizontal,

(il) ¢ is tensorial of type ad modulo w (i.e., L,*¢’ — afa' e I{w)).

Proof. (1) Lety C T'M be a complementary bundle to r, and let » be its
horizontal lift. Choose a representative g, of g such that g,}, = 0. Let X ¢ TP,
be such that /7, X = 0, and choose an equivariant vector field ¥ ¢ 9 such that
w(Y,) = 8. Now '(¥) = 0, o’(X) = 0, and o(X) = 0. Since /7 (X, Y],) =0,
we have wi([X, Y]) = 0 and

05(X) = 0", (Xo(Y) = (0s N o)X, Y)
= (do} — 0, A\ o)X, Y) = —oi([X, Y) = 0.

If o, is another representative of g whose restriction to /77(z) is the same as
a,, then we have

o, — 0y = 0w , §= (7).
(2.2) and (2.7) (i1) imply that
L¥6 = ada™t .

Let ¢, 8, be the derivatives determined by ¢, and g, respectively. A straight-
forward computation using (2.9) shows that modulo w,

(2.13) 0, — 6, =ds — 10, d] -

By [3, Theorem 6, p. 86], the right-hand side of (2.13) is horizontal. As any
one-form in /(w) is horizontal, §’ is always horizontal.
(i) Since @ is a connection we have

L¥0 = afa™
and also
Lfw = aw , L¥e = aw’ .
Applying LF to (2.9) we have

LYo’ N aw = af'a™ N aw ,
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and modulo w
Lxg’ :'aﬁ’a‘1 .

We can now construct the derivatives of the secondary characteristic classes
of the foliation ¥ on M. Let " and 4 be connections on P, §~ Riemannian and
¢ basic with curvature . Let ¢ be an R¢valued one-form on P which repre-
sents e H'(M; ®). Choose an infinitesimal derivative 4’ of § with respect to
o. For each element 4,,.- - - 4, ® ¢, - - - ¢, of the Vey basis of H*(WO,), we
setu + 1 =14 + j, + --- + j, and define a differential form on P by

Dv(hh e hik®cj1 T CJ'Z
= (— l)k—l(u + l)Ale(ﬂ’ ‘9T) s Acik(ﬂy ‘97—)((:1‘16]‘1 ctr Cjz(ﬂ/) Q)) s

and we extend to all of H*(WO,) by linearity.

We remark that if i, + j, + --- +j, > g+ L (e, if b, - 7, Rc;, - ¢,
is a rigid element of H*(WO,) [13]), then (2.5), which is essentially the Bott
Vanishing Theorem [4], implies that the form c¢,.c,, - -- ¢, (¢, 2) is identically
zero. Thus D, applied to such an element will be zero.

Let f=hy - hyy&@c,, - ¢;, be an element of the Vey basis of H(WO,),
and set g = ¢, ¢y, -+ - ¢;, € I*"YGL,). Then

(2.15) D,(f) = (=1)f"u + D4,,(0,07) - 4.,(0,08¢, 2) .

Theorem 2.16. For each f as above, D (f) is a globally well defined closed
form on M depending on 0 and ¢.

Proof. (a) D,(})is independent of the choice of #'.

If 6; and @] are two infinitesimal derivatives, we have by (2.11)

(2.14)

g6, @) — g6, 2) = gQo, Del(w)*'=0.

(b) D,(f) projects to a form on M.

As each 4., (6, 6") projects to a form on M, we check only that g(§’, ) pro-
jects. By [17, Chapter XII, Lemma 1], we need only that ¢, 2 are horizontal,
and

Lyg(¢', 2) = g(¢, 2) .

It is well known that 2 is horizontal and ¢ is horizontal by Lemma 2.12. From
Lemma 2.12 (ii) and the fact that g is adjoint invariant, we have

Lig(', 2) — g(¢', Q) = g(L¥0', aQa™") — g(ab'a™, afa™)
= g(L¥ — abla™, ala e I(w)*' =0.

(¢) D,(f) is closed.
We first show g(#’, Q) is closed. Let £’ be the g/ -valued 2-form on P
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24 =T A of,
where

=T N oy .
Thus

—QN =02 No.
Taking the exterior derivative of (2.9) we obtain
—OQNo" =Wl —[6,0D N w.

Thus

2 =do — 16, 0]
modulo w and

gde — (0,01, 2) = g(&, Q) .

For each se R, let I(w) be the ideal of forms on P generated by o, + s,
-+, @, + sw,. Note that

I(0)™ =0, Q)= 92+ 582" ¢ I(w) .
The exterior derivative of (2.4) implies that
do =4, 2] .
Using (66) of [8] we have

d(g(¢, 2)) = g(de’, Q) — ug(¢’, d2, 2)
= g(dt’, Q) — ug(?, [0, 2], &)
= g(do0’ — 10,0, Q) = g(&', Q)
0

= o w1599

As g(2(s)) e I(w)“"* = 0, we have dg(@’, ) = 0. Now each 7, is odd, and 4"
is Riemannian; thus we have

d(Aci,,(ﬁa 07)) = cin(‘Q) .

Since 2 ¢ I{w), the form d(4
to (2.15) we see it is closed.

Theorem 2.17. For each fe H¥(WO,) and B ¢ HY(M ; D) with o representing
B, the cohomology class [D,(f)] € H¥*(M; R) depends only on f and the foliation
F,

6, 0N)g(@, 2) € I{(w)***™ = 0 and so applying d

Cip
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Definition 2.18. We denote [D,(f)] by D,(f), and call it the derivative of f
in the direction of B.

In what follows we will be doing many computations involving g/ -valued
forms «, 8,7, - - - on P. The reader should note that whenever we consider a
form such as f(e, 8, 7, - - -) on P, that form always projects to a form on M.

Proof of Theorem 2.17. (a) D,(f) is independent of the basic connection.

Let ¢, and 6, be two basic connections on P, with associated derivatives &,
and 6§, with respect to ¢. The connection

0, =1t6, + (1 — )b, , teR
is basic and has associated derivative
0, = t6; + (1 — 1)0;
with respect to . Again using (66) of [8] we have
d(g(ﬁi, 6, — 6, 2.,))
== g(daza 01 - 007 ‘Qt) - g(ﬁ:, dﬁl - daﬂa Q:)
+ (u— 1)8(% 6 — 0, 10,, 2.1, 2,)
= g(d0: - [6“ 0;]: 01 - 007 ‘QL) - g(0:7 d(al - 00) - [0L9 01 - 00]5 Qt) -

Combining this with the equation

%at—g(ﬁz, ‘Qt) = g(ﬁi - 06’ ‘Qt) + ug(0:> d(ﬁl - 00) - [0;9 01 - 00]7 -Qt) 3
we obtain
2.19) — 80, 20 + udg(0), 6 — 00, 2)

= g(ﬁi - 06’ Qt) + ug(el - 003 dﬁ: - [0n 0:]: Qt) .
Lemma 2.20.
g(6{ - 06) QL) + ug(al - 007 dﬁ: - [0t5 02]5 ‘QL) = 0 .
Proof. 1If we apply (2.5) to 4, we have that the curvature 2, of g, satisfies
(‘QL); = (['z)z'k N wy .
Set
@05 = (I N\ o, .
Then modulo w

2, =do; — 10, 0] .
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(2.3) applied to 6, and 6, implies that 8, — 6, ¢ I(w), i.e.,
22D @ — 6)s = 2o, =2
If we now apply (2.9) and (2.20) to #; and §;, we obtain that modulo
6 — 80 = Zro,
Set
s, 1) = 2, + s2;,
0(s) = (6; — 6,) + sie’,
Is(w) = I(a)l + SC!);, crr, Wy + S(l);) .

Then (s, t), 6(s) € I(w) so
g(6(s), L(s, 1)) e I ()" = 0,

g(0; - 0(’)9 ‘Qt) + ug(01 - 003 dﬁ: - [0“ 0;]5 ‘Qt)
= g(9/0s6(s), £2(s, 1)) + ug(6(s), 9/05L2(s, 1), (s, 1))l =0
= 0/3sg(0(s), (s, 1) s=0 = 0 .

Thus (2.19) and Lemma 2.20 imply
25001, 2) = —ud(g(0, 0, — 0, 2) .
By [13, Theorem 1] we have
%Aw(an 07) = AW, + ici(6, — 6, 2,) ,
where W, is some form on M. Thus
55?(4

0,,07) - -+ 4..0., 6180, 2.)

k
- ij Aci2(0u 07) e (dWln + incin(ﬁl - 005 ‘Qt)) T Acik(ﬁn 0T)g(027 ‘Qt)
— Aciz(ﬁn 0r) e Acik(aw 07)ud(g(02, 6, — b, ‘Qt)) .
Each term in the sum of the form 4,, --- (i,¢;,) - -+ 4., 8 is zero as

€, (01 — 60, 2)8(0:, £2.) € ()" = 0.

d(4., (6., 680, 2)) = ¢, (280, 2)) € [(w)** =0,
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each term in the sum of the form 4., --- (dW,) - - - 4,
d(4 - W, -+ 4., 8) Finally as

g may be written as

ix

d(4,, 0., 07)¢(0,, 6, — 6y, 2,) = ¢,(2)8(0,, 0 — 60, L) € [(@)* ™ =0,

we may write the last term as —d(4 - 4., ug). Thus

Ciy

@22 ai,u%(e“ 6) - 4,0, 0086 0) = dW

for some form W on M. Integrating (2.22) from ¢ = 0 to ¢t = 1 finishes the
proof of part (a).

(b) D,(f) is independent of the choice of Riemannian connection.

As d(g(@, 2)) = 0, we need only show that for two Riemannian connections
#; and 6; on P

Ac,;,z(ﬁa 0{) ctt Acz(ﬁa 0{) - Aciz(ﬁ’ 03) c Acik(ﬁs 05) = exact on M .

&

If we write

ACiZ(ﬁﬁ 0{) Tt Acik(ﬁs 0I) - Ac,‘,z(ﬁ’ 06) te Aczk(ﬁa 06)

k
= ij (Aciz(ﬁa 06) e Acin_l(07 06)Acin(07 0{) T Acik(ﬁb 0{)

- Aci.z(ea 06) ct Aciﬂ(ﬁa 05)A (03 0{) fe Acq;k(ﬁa 0;)) s

Cint1

then this follows directly from the facts:
(i) Ifdegec, is odd, then 4,67, 67) = exact on M. See [9, Proposition 4.3].
(i) 4,006,600 — 4.0, 6;) = 4.(6;, 67) + exact on M. See [13, Theorem 1].
(¢) Dy(f) is independent of the choice of representative of 3.
Suppose that ¢, and ¢, are two R%valued one-forms on P representing f,
whose restrictions to I77'(z) are the same. Let §; and 6, be the corresponding
derivatives of §. From the proof of Lemma 2.3 (i) we have

0, — 6, =dir—[0,1] .
Thus

g(0:, ) — g0y, 2) = g(d2 — [0, 2], 2)
Now
4..00,67) - - 4,06, 0861, 2) — 4.,0,0) - 4..00,080; 2)
= 4.,0,07) --- 4,0, 0)d(g(4, 2))
=d(4,.(0,0) - 4,00, 084, 2)) .

Cig
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The last equality follows from the fact that for each i,, n > 2
d(4.. (0, 00, D) = ¢, (g, D) e [(w)**» = 0.

Thus D,(f) does not depend upon the extension to 7*M of the section 5 ¢
C=(c* @ v) representing f. ) .

If y and § are elements of C>(c* @ v) with dy = 0 and dé = 0, then for
fe H¥(WOy), D, ()= Df)+ Dy(f). Thus it is sufficient to show that given
A e C>(v), there is a form W on M such that

Dy(f) = dWw .

An element 4 € C>(v) corresponds to an R?valued function /4 on P which satis-
fies

haw) = ah(w) , aeGL,.
The correspondence is given by choosing a representative
Ye C~(TM)
for 2 and letting ¥ be its horizontal lift. Then
o) = (@), e, (o) = 0 7).
The element d 2 is represented by the R-valued one-form
dh — oh .
Then
o = —dh + 6h,
ONw=do —0N o
=doNh—0Ndh+ 0N dh— 86N 6h=20h.
By (2.5), 2h = I’ N\ wh. Now as
I, =1T%;,
G5 N oy =T N wphy = Uiy N @y,
and so
¢ =Th.
Note that (2.5) implies that modulo @
rn=—iMa,

where i( ) is interior product. Thus we may use
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o = —i(N)Q,
and for g e I*"}(GL,) we have g(f) € I(0)**' = 0, so

—1

+”UM@=0-

gmm=-w®Qm=u

Thus Dg(f) = 0.

This completes the proof of Theorem 2.17.

Theorem 2.23. Let F,, s e R be a differentiable family of foliations on M,
and let B be the infinitesimal deformation of F, determined by F,. Then for all
fe H¥WO,)

DN = et () -

That is, the infinitesimal derivative gives the actual derivative of the character-
istic classes for the foliation F,.

Proof. Let o', 6, be respectively the canonical R?-valued one-form and a
basic connection on P, the principal dual normal bundle of F,. We choose 6,
to vary differentiably in s. For small s, P, is canonically isomorphic to P,. We
use these isomorphisms to obtain two families on P,, @' and 4, satisfying

(i) o°is an R%valued one-form,

(ii) 4, is a connection form,

(iii) do' =06, N\ o
Indicating derivatives in s evaluated at s = 0 by ., and writing & for «°, 6 for
6,, @ for @,, and 4 for 4,, we have

do=60No+0No.
If ¢ is a representative of the class 8, we have likewise
do/ =0 Now+ 0N o,
where ' = —o. If we can choose a ¢ so that & = «’, we would have modulo
6=4¢.

Let 6" be a Riemannian connection on P,. Then by Lemma 2.25 below we
would bave for f=h, - h  Qc;, - ¢ b+ + -+ =u+ 1

9w
os 7 M=o

= (_ l)k—l(u + I)Aciz(as 07) et Acik(aa 0T)Ci1cj1 Tt Cj;(éa ‘-Q)
= (=D "u + D40, 6 - - 4.6, 0)cqc; - - c;,(6, D)
= Dﬂ(f) 2
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and we will be done.

Choose a Riemannian metric on M, and denote by /7} the projection of
TM onto the subbundle v, normal to the foliation F,. Then (see [14]) 5 is re-
presented by the element ¢ € C=(zf ® v,) given by

(2.24) o(X) = — L mrx )[
as

, for Xez,.
s=0

The normal subbundle v, of F, pulls back to a horizontal sub-bundle 9 of
TP which is complementary to 117 '(z,), and ¢ is trivial. For small s, o° is a
non-singular R,-valued one-form on p. Let

Xx = (X::l" Tty Xg)
be a global framing of £ which is dual to o, i.e.,

It follows easily that ¢ is represented by the R?%-valued one-form é on I77'(z)
given by
s=0) )

(X)) = —w(%(wi(X)~X§)

Since
(X)) =0  forXell™\(z,),
o) = o Zuitt)|_-Xi)
= (Fat] oo Fn)(X) — —a(x) .
Thus o’ = —¢ = & and we are done.

Lemma 2.25. Letf=h, --- h,Rc, --- ¢c;, e HYWO,) be an element of
the Vey basis. Set u + 1 =4, + j 4+ --- + Jj,, and let F, be a smooth family
of codimension-q foliations on M. Let 6, be a family of connections on P, as in
the proof of Theorem 2.23, and let 6" be a Riemannian connection on Py. Then

— (1 D[4 0000 - A6 0eucs - en-2 0..9.)]
S

Proof. Again we use [13, Theorem 1] which states
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0 . 0
—c(02) =1ide <—-0s, Qs> ,
" (£2,) r
i'Aci(aw 07) == sz + ici(”iﬁss Qs) bl
as as
where W, is some form on M. Thus
0
=__—[4
3 [

(03’ 07) cre Aczk(ﬁsa 07)6']1 M c,jz(‘Qs)]

Ciy

S
a , d
= [Z ACfl(as’ 0’) et <du/z" + incin<*‘v0xs “Qs>>
1 as
4., (0, 07)cy, - ¢ (2)
1
+ Z—: Ach(aw 07) T Acik(ﬁss 07‘)6']-1(98)

I jmdcjm<‘i037 Qx) P ch(Qs)] .
as

Since

d(dcin(ﬁxs 0T)cj1 D cjz(‘Qs))

= ci"(‘QS_)cj1 Ce cjz(“Qs) e I(ws)u+l+(i,,—-;1) -0,

all the terms in the first sum involving the dW;’s are exact. As
a wt (ip—11)
s a5 Oy, 2, )c;, -+ ¢, (2,) e Hw)** et
s

all the other terms except the first are zero;forifn > 2, u + (@, — i) > g+ 1.
In the second sum we use the fact that for n > 2

. d
Al (00 0en(@2) - Jura(2-0,2.) -+ Q)
= ¢; (£2,)c;(82,) - 'jmcj"‘<ai 4., .Qs> coe 0 (R) e Hw)y it =0
N
to show that modulo exact terms

Acil(ass 07) Tt Acik(as) 07)6'].1(!2&) M jmdcjm<7aa*0w Qs) e cjz(‘Qs)
Ay
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= (— l)k_lcil(‘Qx)Acig(gw 07) ct Acik(axa 01)61‘1(99
st jnzcjm<"i'0s) ‘Qs> vt C]-L(.Qs) .
os

Thus we obtain

d
k)
os

= Jieu( 200 2)2. 0000 - 4,0, 00, - 1)
S

1
+ Z_:l (— ])k—lcil(Q‘Y)Aﬁz(gw oy .- A”k(gm 0T)cj1(‘Qs)
(2.26) o 3
e jmcjm<“"0s: Qs> RN le(Qx)]
os

- (- 1)k—1[4.,,;2(es, o). 4, (6., af){ilcﬁ(.%as, Qs>cj1 e (2)
4
+ cil(‘Qs) Z=1 cj1(‘Qs) o jmcjm<%0s9 Qs) T cjl(‘Qs)}] .

Now if fe I*(GL,) and g € I'(GL,), by definition (see [17])
N0 CRERRID. )|

kit .
= -(k'—FT)T ;.f(X-:(l)s c 5X-:(k))g(Xr(k+l)’ Tt Xx(k+l)) s

where the sum is taken over ali &, / shuffles #. It is easy to check that

(2.27) (k + D)X, Xy) = kf (X, Xy)g(Xy) + [F(Xy)g(Xy, Xo)

and so the sum inside the { }in (2.26) is equal to

(U + 1)ci1cj1 e cjz("q’gs’ Qe) p
os

finishing the proof.
Note that if ¥ > ¢, then we have both (6/ds)a¥(f) and D,(f) are zero.

3. Extension to complex foliations

We now show how to partially extend the construction of the previous sec-
tion to the case of complex foliations. The numbering in this section was done
so that objects corresponding to things in § 2 have corresponding numbers, i.e.,
(3.3) corresponds to (2.3), etc.



328 JAMES L. HEITSCH

We begin by remarking that if GL,C denotes the complex general linear
group, then

I(GL,C) = I(GL)® C,

and all the comments in § 1 concerning the Chern-Weil homomorphism hold
for GL,C.

Throughout this section we adopt that notation that F is complex codimen-
sion-g complex analytic foliation on a complex manifold M. We denote the
holomorphic tangent bundle of M by TM, and remark that the tangent bundie
r of F is a subbundle of TM. We denote the holomorphic cotangent bundle
by T*M. Similarly the antiholomorphic tangent and cotangent bundles are
denoted by TM and T*M respectively. We write the normal bundle TM/zr of
F as vy, and its dual bundle as v*. A section of v* is then a section of T*M,
ie., a (1, 0)-form on M, whose restriction to z is zero.

Let R [¢,, - - -,¢,] be a truncated polynomial ring isomorphic to R [c,, - - -, ¢,]
of § 1, and denote by A(h,, - - -, h,) an exterior algebra on the A, where degree
h; = 2i — 1. The graded differential complex WU, is defined to be

WU, = Ahy, -+, ) @ RJlcy, -+, ¢ ] ® R, - --,],
where the differential is given by
dh,R@1RN=10¢,R1 —-1R1Q¢,,
dl® N =4d1R®1®¢)=0,
or more informally
dth)=c, — ¢, , d(c,) =4d(¢)=0.

Denote the ring of complex valued differential forms on M by A(M). Let 4, be
a Hermitian connection, and 4, a basic connection [1] (with curvatures £, and
£, respectively) on P, the principal bundle associated to v*.

Define a: WU, — A(M) by

aF(cz’) = ci(‘Ql) s aF(Ei) = a@1) s aF(hi) = Ac.;(ﬁls 8y) — Aéi(ﬁl’ ‘90) >

and extend linearly. Since 6, is Hermitian, the form c¢,(£2,) is totally real, i.e.,
c;(£2,) = ¢, (£2,), and thus a, commutes with the differentials and induces

ok H¥(WU,) — H*(M; C) .

As in the real case, af does not depend on the choices made. See the references
in § 1 to the construction of «} in the real case and [5].
A Dbasis of 7*Y(GL,C) is given by elements of the form
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1 G (i1+"'+ik=CI+1,l}£"'£ik)-

= ¢

Each element ¢; determines an element Ac, € H**}(WU,) given by

he; = [hycyy oo + Chutyy - - F 8 - G Ry ]

These elements are known to vary linearly independently [5].

A [" vector field on M for F is a holomorphic section {¥> e C=(v), where
Y e C~(TM @ T M) is a vector field whose associated real part preserves F in
the sense that the local diffeomorphisms which it generates map leaves to leaves.
Let @ be the sheaf of germs of local I” vector fields for F. Then H(M ; @) may
be interpreted as infinitesimal deformations of F. The groups H*(M; @) can be
computed using the complex

C) —1> Co(* ® T*M) ® 1) —> Co(Mc* ® T*M) ©1) s ..

where d is defined by (1.4) using a basic connection on y. Thus each Be
HYM; @) can be represented by an element ¢ € C=(A}(z* ® T*M) ® v) with
d¢ = 0, and any two such representatives differ by an element d 7, 7€ C=().
See the references after (1.4).

The construction of the derivatives for the elements hc;, ¢, € I*Y(GL,C),
now proceeds in a fashion nearly identical to the real case. We will outline it
indicating the necessary changes.

Denote by II: P — M the principal bundle associated to v*. Then, as in the
real case, P has a canonical C?%valued one-form w, and if # is a basic connec-
tion then

3.3) do=0ANw.

This immediately implies that the curvature £ of § satisfies
3.4 RPNo=0,

SO we may write

(3.5 =T N ey,

(3.6) I, =1%.

Just as in the real case, g8 € H'(M; @) can be represented by a C-valued one-
form ¢ on P such that

(i) o is horizontal ,
3.7 (i) L¥¢ =ao,

(i) do — 8 N olg-rorm;y = 0.
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Definition 3.8. Let 8¢ H'(M; @) be represented by the C%valued one-form
o on P. The derivative o” of @ with respect to ¢ is given by

Equation (3.7) (iii) implies that there is a g/,C-valued one-form ¢’ on P such
that

(3.9 do/ — 0N =0 Now.

Definition 3.10. Any g/,C-valued one-form ¢ satisfying (3.9) is called an
infinitesimal derivative of § with respect to ¢.

It is easy to check that (2.11) and Lemma 2.12 hold in the complex case. In
the proof of Lemma 2.12 we note that TM is now the holomorphic tangent
bundle of M, and we must replace I77'(z) by I '(c ® TM).

Definition 3.14. Let fe I"*Y(GL,C), and denote by Af the element which f
determines in H***'(WU,). Let g ¢ H'(M; @) be represented by . Let 2 be the
curvature of a basic connection § on P, and let & be an infinitesimal derivative
of § with respect to ¢. Define

Dyhf) = [2(q + DA, Q)] -

Here .# denotes the imaginary part of a form.

Theorem 3.17. Let f, 6, 8, 2 be as in Definition 3.14. Then 2(q -~ 1).# f(¢’, 22)
is a globally well defined closed form on M whose cohomology class depends only
on B and f.

Proof. To prove this we merely repeat the proof of Theorem 2.16, parts
(a), (b) and (c) ignoring the parts pertaining to the 4,. Then we repeat the
proof of Theorem 2.17 parts (a) and (c). In part (a) we stop at the end of the
proof of Lemma 2.20. In part (c) we disregard the parts pertaining to the 4,,,
and for ¢* read ¢* @ T M. As the proofs carry over with only minor changes
we omit them.

Theorem 3.23. Let F,, s € R be a differential family of complex analytic foli-
ations on M, and let B¢ H'(M; D) be the infinitesimal deformation of F, deter-
mined by F,. Then for all fe I""(GL,C),

D) = 2t ()| -

Proof. This proof proceeds identically to the proof of Theorem 2.23. In
particular we choose a family of connections ¢, on P, such that g, is basic for
F, and varies differentiably in 5. Then we need to choose a representative ¢ of
B so that modulo w,

96l —w,
s Js=0
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where ¢’ is the infinitesimal derivative determined by 6, and ¢. To do this
choose a Hermitian metric on M obtaining a family of projection operators
IT;-. Then ¢ is given by (2.24). See [14]. In the proof of Theorem 2.23 we must
replace ¥ by ¥ @ T*M, and R? by C% The proof of Theorem 3.23 is then
completed by

Lemma 3.25. Let fe I""(GL,C) and F., 8, as in the proof of Theorem 3.23.
Denote the curvature of 0, by £2,, Then

D at) = 2+ 0f(-20,0.)

Proof. By linearity we may assume f = c;, - - - ¢;. Let 8" be a Hermitian
connection on P,. Then

af(hf) = (4.6, 6") — Aa”(ﬁm 0 Neu(8) -+ L)+ -+
+ ci1(‘Q.‘3) cr Gyl 1(‘03)(Ac1k(0s’0h) - AEik(ﬁx, 0h))] .

Again [13, Theorem 1] implies
3 .
~—Q(~Qs) = d(zc <« 0, 2 ))
70 (@) = d(zc ( 4, Q))
9 4.(6.,6" = dW, + ici<—a-6's, QS> ,
as os
) A
240000 = A, + e (20, 2,) .
as as

A straightforward computation using these facts, (2.27) and the fact that dc,(£2,)
= d¢,(£2,) = 0 shows that modulo exact terms

’aif(én(gs) o Gy 1(Q )(Aczr(ﬁ.w 0h) - AL; (05’ 0h))cu+1( ) T clk(‘Qs))
= (q + 1)<5z1 T 57.'7-—161',- e cig(*‘a‘”ﬁs) Qs)
as
— 511 e éirci7+1 PP cik<i0s5 Q3>> .
s
Summing over r we obtain

Do = g+ 0(7(2-0.2) — 7 (L0, 0.))
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- 2q + 1)ff( 9., Q)

In the next section we will compute #” for specific foliations. We do the
computations locally on M, not globally on P. Specifically we do the following.
Let F be a codimension-¢ foliation on M, and choose a basic connection 4
for F. Let Se H(M;®), and choose a representative ¢ e C*(T*M ®v),
(C=((T*M @ T*M) ® v) in the complex case). Let U be a neighborhood on

M on which F is defined locally by one-forms w,, - - -, w,.
(i) Compute the local connection and curvature forms 6 = (6%), 2 = (2%
with respect to the local basis @, - - -, w, of v¥.
(ii) Choose a local basis (X;>, - - -, {(X,> for v and write ¢}, = g, & (X,).
(iii) Set w; = —w (X} -0y
(iV) Compute do; — 65 A wj. This will lie in the ideal generated by w,,
, L.e., write dw; — 05 N\ o) = 8’} N\ w,, and set § = (8").

(v) Fmally for fe H”“(WOq) Dﬂ(f) is represented by the form whose
restriction to U is (¢ + 1)f(¢’, £2). For fe I**Y(GL,C), D (hf) is represented by
the form whose restriction is 2(g + 1).# (¢, 2).

4. Some interesting trivial examples

In this section we compute two examples for which all derivatives are zero.
Example 4.1. The Lie group SL(2, R) has Lie algebra

sI2, R) = {A e gl(2, R)|tr 4 = 0} .

We may choose a basis of left invariant one-forms on SL(2, R) w, w,, w, which
satisfy

do=wANow, do,=0Nw,, do,=o0 /N o,.

Let X, Y and Z be left invariant vector fields dual to w, w, and w, respectively.
Then

[X,Y]= —X, [X,Z]=—Y, [V,Z]=—

Consider the foliation F on SL(2, R) defined by ». The normal bundle v to
F is spanned by (X, and as do = —w, /A o, the covariant derivative F of a
basic connection on y satisfies

FXD> =0, @),
The bundle v is trivial as is ¢ the tangent bundle to F. Thus

C(c* @) = {(fo, + gw) ® (X>|f g e C=(SL(2, R))} ,
C(Le* Q@) = {hay A @, ® (X>|he C*(SL(2, R)} .
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A simple computation using the above information and the definition of d gives
d(fo, + g0) ® CXONY, Z2) = (Yg — Zf + 28) ® (X .

Let g e H(SL(2, R); 9), and suppose § is represented by (fo, + gw,) @ {X>.
Then

o = —(fo, + gw,) , 0= —a.
Using the fact that d (fo, + gw,) ®{X>) = 0 we have that

do’ — 0 N o = ([df( X, + dg(X)w, + fw) N\ @ .
Thus

(4.2) ¢ = df(X)w, + dg(X)w, + fo, .
In addition

4.3) R=dl= —0o N w,.

The complex H*(WQ,) satisfies

0 H * # 07 3 3

R, *=0,3,

and H¥WO,) is generated over R by h,c,, the Godbillon-Vey invariant [12],
where A,c,(0, 2) = ¢ N\ 2. So from (4.2) and (4.3) we have

H*(W0,) = {

4.4 he(6, 2) = di(X)o N\ o A\ o, = d(fo, N\ o,) .

In order to obtain results about foliations on compact manifolds we form
the manifolds SL(2, R)/I" where I is a discrete subgroup. For the proper choice
of I' we obtain the horocyclic foliation of geodesic flow on the unit tangent
bundle of any compact Riemannian surface of constant negative curvature.
Roussarie has noted that the Godbillon-VYey invariant of this foliation is non-
zero as it is 2 multiple of the volume form of the manifold.

The computation for SL(2, R) extends to these foliations by restricting to
sections invariant under 7" of the relevant bundles on SL(2, R).

By (4.4) we have that [A,¢,(¢’, 2)] = O for any infinitesimal derivative of 4,
and so the following.

Theorem (4.5). Let M be a Riemannian surface of constant negative curva-
ture, and let F be the horocyclic foliation of the geodesic flow on the unit tangent
bundle T° M. Then

Dy H(T°M; ®) X H*(WO0,) — H*(T°M; R)

is the zero map.
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Theorem 4.5 says that if we consider the Godbillon-Vey invariant as a co-
homology valued function on the space of foliations on T°M, then the horo-
cyclic foliation F is a critical point of this function. The reader should be cau-
tioned that it is possible for a family of foliations F, to exist on 7° M with F,
= F satisfying h,c,(F,) varies continuously. Theorem 4.5 implies only that
(0/3s)(hei(F)) 520 = 0.

Example 2. The Hopf fibrations. Consider the natural fiber bundle C**! ~
{0} — CP». This gives a foliation F on C"*! ~ {0} of complex dimension 1. We
prove

Theorem 4.6. Let F,, s ¢ R be any differential family of complex foliations
of dimension 1 on C"*' ~ {0} such that Fy = F. Then for any element fe
I"*YGL,C) the element hf ¢ H***Y(WU,) satisfies

D arf) =0.
o8 s=0

In [6] examples are given of foliations F, as in the theorem such that the
elements determined by the ¢,, - - - ¢;, € I***(GL,C) vary linearly independently.
Just as Theorem 4.5, Theorem 4.6 says that if we consider the elements Af e
H**Y(WU,) as functions on the space of foliations on C**! ~ {0}, the Hopf
fibration is a critical point. This is so because of the tremendous symmetry in-
herent in its structure.

Proof of Theorem 4.6. In what follows subscripts denoted by i, j - - - run
from 1, - - -, n, and those denoted by 4, B, - - - run from O, - - -, n.

Since F is given by a fiber bundle structure over CP*, the dual normal bundle
v* to F is isomorphic to the pull back of the holomorphic cotangent bundle
T*CP" on CP". Any connection on T*CP™ of type 1, 0 may be pulled back
to give a basic connection on v¥*. See [1]. We shall use the Kédhler connection.
Let U be the open set of C**' ~ {0} defined by

U= {(ZOa "'azn)fzozﬁo} .

U may also be considered as a homogeneous coordinate system on CP", Let
{, > denote the standard Hermitian inner product on C**!, and let {z,z) =
{z|F. The local forms on U

o, = A —ndn o [ZZ]
’ 2 ’ Iz

form a basis for the local one-forms on CP*. As F is spanned by the vector
field

X = z,0/0z,,



SECONDARY CHARACTERISTIC CLASSES 335

we see that the w; define  on U. The local connection form of the Kéhler con-
nection on CP” in the basis given by the w, is

. ZoZ . s ZoZ
G = 201 1§,
R T

and the local curvature form is

4.7 =a; N\ o, + 0@, N\ o, .

Finally note the volume form d Vol on CP" when restricted to U is
dVol = Ka, AN oy, \ -+ Nd, N\ o, , K a constant .

Lemma 4.8. If fe I*"' (GL,C), then for 6, 2 as above and any infinitesimal
derivative §' of 8, f(6', 2) is a multiple of the tr & /\ d Vol.

Proof. I(GL,C) is a polynomial algebra over C with generators c¢,, kK =
1, - - -, n, where the degree ¢, = k, and for X, - - -, X, ¢ g/,C

- 1 k fyeasd il ik
@9 ald, o X = (ZHH)kk!k! %: N X nwit - Xy ik »
where the sum is over all permutations /7 of 1, - -, k, all ordered subsets
(i, -+, i) of k elements of (1, ---,n) and all permutations (j,, - - -, j;) of
(i, - - -, i), and §{:/F denotes the sign of the permutation ;, -+ -, i, —f, * -+, Ji-

Iff=a,.,c, - - c,fora,.., cC, then
0,0 =3 -T a0, D) e D)
=1n+1

From (4.7) it is easy to see that ¢,(£2) is a multiple of (@, A\ w)*, i.e.,
@) = Ky A wpy A - Ay A wy, -
Thus a typical term of f(#’, 2) is a multiple of
(@, ) N (ry~—.
From (4.9) we have

—1y oo . 4
410) (@, Q) = — D Sgaengn A A A AR

( ) c'r( ) (271_‘/_—1)7’.!}‘ Ig FERREN P I ] /\ J Jr
Consider a single term of f(¢’, 2) of the form &% N Q2 A - N Q7 A
(tr 2)*~"*! and assume i; = j;. For the moment we also assume £} = @; N\ o,.
As i # j, Q% N -+ A £% contains the form @,, but not the form w,,. Each
term of (tr 2)*~"*! which contains w,, also contains @,. Thus 22 N --- A
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Qi A (tr 2)*~7*' is an (n, n)-form on CP* each term of which either contains
@3, or does not contain w,,. In either case the form must be zero. The same
argument works equally well for all other terms of (4.10) and the addition of
the terms 6@, A o, to 2% changes nothing. Now by the symmetry of ¢, we
have

(4.11) e (0, ) = Ke(0)e,_(2),

K a constant. To complete the lemma we need only note that ¢, is a multiple
of tr and (tr 2)* is a multiple of d Vol.

Let F,, s € R be a differentiable family of foliations on C**! ~ {0} such that
F, = F. As noted above F is spanned by X = z,3/0z,. Let

_ z,dz,
@ = — =, w = —--
[El8 llz]*

Then o is dual to X, and the infinitesimal deformation ¢ of F associated to F,
is given by

= wQ 7,000z,
for some holomorphic vector field
740/0z, on C**' ~ {0} .
Thus

a Z; — 7iZ
(1): = —w;o0 = —a)i<7‘A* w = ,TJLL __2_;_7:?,';',,
0z, z;

@ .

We make several observations which will greatly simplify the necessary com-
putations. '

(a) o, @ and the @;, w, form a basis of 1-forms on U. £ consists entirely of
(1, D-forms in the @,, w,;. If ¢’ is any infinitesimal derivative of 4, we may dis-
regard all terms of type @, », in ¢ when computing f(¢’, 2) for fe I**'(GL,C)
as these terms will wedge to zero for dimensional reasons.

(b) We wish to show that

240, 2) =0

for any derivative . Because of the linearity of our constructions as explained
in § 2 we may assume that all the y, = 0 except 7,.

(c) The function y = y, is holomorphic on C"*' ~ {0}. If n > 1, then
Hartog’s Lemma implies that y is holomorphic on C"*!. Again by linearity,
we may assume

r(ZO""aZn):ZDaO"‘Z;n’ a’AZO’
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and we have
W= —7/z0,
w;=0, J#F1.
(d) 27[(f(¢, 2))] is a well defined class in
H™(C™ ~ {0} C)

and U is a dense subset of C**' ~ {0}. Thus, if we compute a Jocal expression
for f(¢’, £2) on U and have

j 16,9 =0,
SNy

then '
2710, )] = Du(f,{a)) = 0.

(¢) dw is the pull pack of 2-form of type I, 1 on CP", and so can be ig-
nored in the computation.

(f) The volume form on $***!is w /\ d Vol.

Now a straightforward computation shows that modulo w;, @;

i 5i[ zZy a)] + 5i[ iy _ af + a(r/z0) ZAZOZ_L](U

T Lz Lyzip 6z, 0z, zIP

Thus

/ Z or 0(r/z)) z4ZE
—tr0 = (4 DT — T Yy o T2 2 L,
zIf 9z az,  |zIf

Observe that

(n+ 1) Zir =j o

San+1 ”2“2 Sand1 aZAI
For y # z, both integrals are zero; if y = z, they are equal since

Z4Z,4
izl

=1, J 2z, = J z.z, foranyk.
Sar+1 S2m+1

As for the second term in tr §’ we see that

- 20“0_121“1 ceezZEm

Zy

and so
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0l 54 [(5a)) - 1] A

6z, " ||z|? 2|

Again the integral is zero unless y = z,, but in that case

Sa,—1=0.

A

In all cases we have

[ . 1e.9=0
Sam+1
for any fe I"*'(GL,C), and so the imaginary part is zero, proving the theorem.
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